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Tau, b-Amyloid, and Glucose Metabolism
following Service-Related Traumatic Brain Injury
in Vietnam War Veterans:
The Australian Imaging Biomarkers and Lifestyle Study
of Aging-Veterans Study (AIBL-VETS)
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Abstract
Traumatic brain injury (TBI) is common among military veterans and has been associated with an increased
risk of dementia. It is unclear if this is due to increased risk for Alzheimer’s disease (AD) or other mecha-
nisms. This case control study sought evidence for AD, as defined by the 2018 National Institute on
Aging - Alzheimer’s Association (NIA-AA) research framework, by measuring tau, b-amyloid, and glucose
metabolism using positron emission tomography (PET) in veterans with service-related TBI. Seventy male
Vietnam war veterans—40 with TBI (age 68.0 – 2.5 years) and 30 controls (age 70.1 – 5.3 years)—with no
prior diagnosis of dementia or mild cognitive impairment underwent b-amyloid (18F-Florbetaben), tau
(18F-Flortaucipir), and fluorodeoxyglucose (18F-FDG) PET. The TBI cohort included 15 participants with
mild, 16 with moderate, and nine with severe injury. b-Amyloid level was calculated using the Centiloid
(CL) method and tau was measured by standardized uptake value ratios (SUVRs) using the cerebellar cortex
as reference region. Analyses were adjusted for age and APOE-e4. The findings were validated in an inde-
pendent cohort from the Department of Defense-Alzheimer’s Disease Neuroimaging Initiative (DOD ADNI)
study. There were no significant nor trending differences in b-amyloid or tau levels or 18F-FDG uptake
between the TBI and control groups before and after controlling for covariates. The b-amyloid and tau
findings were replicated in the DOD ADNI validation cohort and persisted when the Australian Imaging
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Biomarkers and Lifestyle study of aging-Veterans study (AIBL-VETS) and DOD ADNI cohorts were combined
(114 TBI vs. 87 controls in total). In conclusion, no increase in the later life accumulation of the neuropath-
ological markers of AD in veterans with a remote history of TBI was identified.

Keywords: b-amyloid; 18F-FDG; brain imaging; positron emission tomography; tau; traumatic brain injury; Viet-
nam veterans

Introduction
Military service is associated with an increased risk of

traumatic brain injury (TBI), with up to 10% of service

personnel experiencing TBI in recent conflicts.1 TBI

has been argued to be a strong environmental risk factor

for dementia and epidemiological studies report a 2-4

fold increase in risk among veterans with moderate or

severe TBI.2 TBI has been classified as a modifiable

risk factor for dementia.3 However, the mechanism

underlying this increased dementia risk remains unclear.

Some studies have reported strong associations between

TBI and non–Alzheimer’s disease (AD) forms of demen-

tia but not with AD,4 or a weaker association between

TBI and AD than with vascular dementia and unspecified

dementia,5 while other studies report that TBI is related

to higher relative risk of AD,2,6,7 or an earlier age of

mild cognitive impairment (MCI) onset.8 These latter

epidemiologic studies have two major limitations. First,

they rely on self-report information regarding the history

of TBI, and second, the diagnosis of MCI or AD is largely

based on medical record review and there is a scarcity of

biomarker or direct pathological evidence for this claim.

AD is characterized by dense b-amyloid (Ab) plaques

most abundant in the frontal cortex, the cingulate gyrus,

precuneus and lateral parietal, and temporal regions.9

The second major pathological feature of AD is hyper-

phosphorylated tau, observed as neurofibrillary tangles

(NFTs), found in the transentorhinal areas, limbic, and

isocortical regions.10 Animal studies have demonstrated

acute effects of TBI on tau,11-13 amyloid precursor pro-

tein (APP)14 and Ab.15 It is postulated that these changes

in damaged axons contribute to apoptosis and inflam-

mation, indirectly leading to AD.16,17 Other mechanistic

theories posit that TBI reduces time-to-onset among

those already at risk of AD, as evidenced by accelerated

AD related pathology among injured transgenic mice

models expressing mutations in APP, and tau.18 In con-

trast, enriched levels of phospho-tau species following

TBI have been argued to be temporary, returning to base-

line levels after just 1 day.19,20

Human postmortem studies post-TBI are limited and

have not provided clear evidence that TBI is associated

with Alzheimer’s disease. b-Amyloid as diffuse plaques

have been found in persons where brain tissue was

obtained within hours of severe TBI.21,22 One study of

brains with postmortem evidence of moderate or severe

TBI related to an event ranging from 1 to 47 years ear-

lier, identified neurofibrillary tangles and b-amyloid pla-

ques in approximately 30% of individuals, with a trend

to more extensive distribution than in age-matched con-

trols.23 However, another postmortem study24 on three

large community-based cohorts of 1500 brains found no

association between TBI with loss of consciousness and

AD-like neuropathological features but did find an asso-

ciation with neuropathologic changes related to Lewy

body disease and Parkinson’s disease.

Moderate-to-severe TBI survivors, within a year of

injury, have been reported to exhibit increased amyloid

tracer binding in cortical gray matter and striatum, a

pattern of distribution broadly replicating that seen in

carriers of mutations in the presenilin-1 gene, a driver

of early onset AD.25 In contrast, a study of Ab deposition

with Pittsburgh compound B (PiB) PET in 12 long-term

survivors of moderate to severe TBI who reported cogni-

tive impairment found no association between tracer

uptake and severity of TBI.26 In the DOD ADNI data-

set, no effect of TBI history on AD biomarkers were

found.27,28 The current tracers for tau PET detect the

3R/4R form of tau and do not show binding on PET

scans in non-AD tauopathies.29

Fluorodeoxyglucose (18F-FDG) PET allows the mea-

sure of hypometabolism, a marker of synaptic/neuronal

impairment. Despite inconsistencies in time since injury,

TBI severity, age range, and injury modality, studies

have shown reductions in regional metabolism. A gen-

eral trend has emerged showing acutely increased glu-

cose utilization in the days after TBI, followed by

hypometabolism lasting weeks to months.30-32 Reduc-

tions in regional metabolism have been found in areas of

the brain particularly sensitive to TBI, for example in

frontal and temporal regions,33-35 cerebellum, medial

temporal lobe, parietal, somatosensory, and visual corti-

ces.36,37 One group has hypothesized that impaired cere-

bral glucose metabolism may contribute to promoting

amyloidogenesis, abnormal tau hyperphosphorylation,

and neurofibrillary degeneration, and therefore lead to

AD-like pathology.38 However, the observed depres-

sion in glucose metabolism only lasted for a few weeks

or months.30

The main objective of the Australian Imaging Bio-

markers and Lifestyle study of aging-Veterans study

(AIBL-VETS) was to investigate with a case–control
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study design if Vietnam veterans with a history of TBI

were more likely to demonstrate the neuropathological

markers of AD than controls. Consistent with the 2018

National Institute on Aging - Alzheimer’s Association

(NIA-AA) Research Framework for a biological defini-

tion of AD,39 we investigated both b-amyloid and tau

biomarkers for AD pathology, and FDG as a marker of

neurodegeneration.

Methods
The AIBL-VETS study was designed to be compatible

with the U.S. Department of Defense–funded Alzhei-

mer’s Disease Neuroimaging Initiative veterans study

(DOD ADNI) to allow independent validation of find-

ings and pooling of data.

Participants
Ex-military service personnel who served in Vietnam age

60-85 years, with and without TBI, were recruited through

retired veteran organizations such as the Returned Serv-

ices League and the Vietnam Veterans Association of

Australia, as well as the Older Veterans’ Psychiatry Pro-

gram located at Austin Health, Melbourne, Australia.

Exclusion criteria included prior diagnosis of bipolar

affective disorder, schizophrenia, dementia, mild cog-

nitive impairment, substance abuse/dependence within

the last 5 years, magnetic resonance imaging (MRI)

contraindication, major, unstable medical condition,

and previous participation in clinical trials involving an

amyloid-targeting therapy.

To be included in the TBI cohort, participants were

required to have sustained at least one TBI between the

ages of 16-40 years. TBI severity was assessed based

on criteria set by the U.S. Department of Defense and

Department of Veterans’ affairs (Table 1).40 Medical

records from the time of injury were not available.

Given reliance on self-report, and to ensure injuries

were given accurate severity ratings (mild/moderate/

severe), only participants who clearly recalled details of

their injury were included. To be included in the con-

trol group, participants met the same inclusion/exclusion

criteria, but were required to report no prior history of

TBI nor post-traumatic stress disorder (PTSD). Approval

for this study was obtained from the Austin Health

Human Research Ethics Committee, the U.S. Human

Subjects Research Protection Office of the U.S. Army

Medical Research and Material Command, and the

Australian Department of Veterans Affairs Ethics Com-

mittee. All participants provided consent prior to par-

ticipating, and there were no direct incentives offered

for participation.

Procedure and materials
All participants were screened over the phone to ensure

they matched study criteria. Those deemed suitable for

the initial assessments were invited into the research cen-

ter to undergo psychiatric and neuropsychological assess-

ment and an interview to obtain detailed TBI history.

Participants were asked to give a detailed account of

events surrounding the injury, including age at injury,

injury cause, presence and length of unconsciousness,

alteration of consciousness and post-traumatic amnesia,

as well as information as to medical attention sought,

and disruption of usual activities due to injury. Based

on this information, and in relation to the information

included in Table 1, each injury was classified as mild,

moderate, or severe.

Psychiatric well-being
The psychiatric evaluation consisted of several measures

to assess PTSD severity, drug and alcohol use, sleep qual-

ity and medical history. A PTSD diagnosis was allocated

based on the Clinician Administered PTSD Scale

(CAPS)41 lifetime and current score. A lifetime CAPS

score of over 40 was indicative of previous PTSD,

while a current CAPS score of over 40 indicated current

PTSD. The Addiction Severity Index-lite42 was used to

assess alcohol/substance use, and the Pittsburgh Sleep

Quality Index (PSQI),43 sleep quality and disturbance.

A score >5 on the PSQI was indicative of poor sleep

quality.

Other measures
Participants also self-reported years of education,

military service history, cigarette smoking status, and

medical history. Comorbidities such as hypertension,

ischemic heart disease, stroke, diabetes, migraine, and

sleep apnea were determined via self-report in an inter-

view with the study psychiatrist. Apolipoprotein E

(APOE) genotype was determined by direct sequencing.

The Wechsler Test of Adult Reading (WTAR) also was

assessed to provide a measure of pre-morbid intelligence.

Table 1. Criteria Used by Department of Defense and Veterans Affairs (VA/DoD) to Categorize Head Injury Severity

Mild Moderate Severe

Loss of consciousness 0 - 0.5 h 0.5 - 24 h > 24 h
Alteration of consciousness A moment - 24 h > 24 h; severity based on other criteria > 24 h; severity based on other criteria
Post-traumatic amnesia 0 - 1 day 1 - 7 days > 7 days
Glasgow Coma Scale 13 - 15 9 - 12 3 - 8
Structural imaging Normal Normal/abnormal Normal/abnormal
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Participants also completed the Combat Exposure

Scale (CES)44 to classify the level of wartime stressors

experienced.

Image acquisition and processing
Participants underwent tau, amyloid, and 18F-FDG PET,

performed on separate days using 18F-Flortaucipir, 18F-

Florbetaben, and 18F-FDG respectively. All radiotracers

were produced on site, at Austin Health. The scans

were acquired on a Siemens 128 micro computed tomog-

raphy (CT) PET/CT camera at the University of Mel-

bourne. A 30-min acquisition was performed 75 min

post-injection of 18F-Flortaucipir, and 20-min scans

were acquired 90 min post-injection of 18F-Florbetaben

and after 30 min uptake time while resting quietly in a

dimly lit room post-injection of 18F-FDG. Low-dose

CT scan was used for attenuation correction. There

was no correction for partial volume effects. In a previous

paper, we reported no difference in hippocampal or

gray matter volumes between the TBI and control groups

in this cohort.45

DOD ADNI validation cohort
Data and scans from the US Department of Defense

Alzheimer’s Disease Neuroimaging Initiative (DOD

ADNI) database (adni.loni.usc.edu) were used to validate

the Ab and tau PET findings. The primary goal of ADNI

has been to test whether serial MRI, PET, as well as other

biological, clinical, and neuropsychological assessment

can be combined to detect and measure the progres-

sion of pre-clinical, MCI and early Alzheimer’s disease.

In the DOD ADNI cohort, 57 normal control (NC) and

74 TBI (16 mild TBI, 58 moderate-to-severe TBI) cogni-

tively unimpaired veterans underwent a 18F-Florbetapir

b-amyloid scan, while 30 NC and 46 TBI (11 mild, 35

severe) had a 18F-Flortaucipir tau scan (Supplementary

Table S1). After download, these scans were processed

using the methods described below for the Australian

veteran cohort to provide compatible Centiloid and stan-

dardized uptake value ratio (SUVR) results.

Image analysis
Reconstructed PET images were processed using

CapAIBL, a previously validated tracer uptake quantifi-

cation software package.46The SUVR quantification

process is described in-depth elsewhere47; however, in

brief, an adaptive atlas was automatically fitted to each

Ab PET image to match the Ab PET retention pattern.

Each image was then spatially normalized to the best fit-

ting atlas. Centiloid values (CL) were then computed

using the SPM8 mask and CapAIBL calibration equa-

tions from Bourgeat and colleagues (2018).48

All tau and 18F-FDG scans were normalized using the

same CapAIBL software, but instead of the Ab analysis,

multi-tau atlases46 and a mean 18F-FDG atlas were used.

Spatially normalized tau scans were sampled in three

different composite regions, as per earlier work49:

mesial-temporal (Me), temporoparietal (Te), and rest of

neocortex (R). The Me region comprised entorhinal cor-

tex, hippocampus, parahippocampus and amygdala, and

the Te region comprised regions inferior and middle

temporal, fusiform, supramarginal and angular gyri,

posterior cingulate/precuneus, superior and inferior pari-

etal, and lateral occipital. Rest of neocortex (R) was made

up of dorsolateral and ventrolateral prefrontal, orbito-

frontal, gyrus rectus, superior temporal and anterior cin-

gulate. Glucose metabolism also was investigated in the

global neocortex (a composite of frontal (dorsolateral,

ventrolateral, and orbitofrontal), parietal (superior pari-

etal and precuneus), lateral temporal (superior, middle,

and inferior), lateral occipital lobe, gyrus supra-

marginalis, gyrus angularis and anterior and posterior

cingulate), and in the frontal composite alone, the mesial

temporal region (Me as used for tau image analysis) and

in an area defined to give a posterior cortical index (PCI)

comprising the lateral temporal, parietal, and precuneus

cortex as commonly used in FDG PET studies of AD.

For FTP and FDG, standardized uptake values (SUV)

were calculated for all brain regions examined by divid-

ing the regional SUVs by the cerebellar cortex SUV. As

there might be some potential pathology in cerebellum of

TBI patients, we also did cerebellum SUV comparison

between TBI and non-TBI individuals. All the scanners

were phantom calibrated for SUV calculation. The quan-

titative results (CL and SUVR) were the primary out-

come measures and all quantification was performed

blind to history of TBI.

Visual reading of images
All 18F-Florbetaben, 18F-Flortaucipir, and FDG images

were also visually inspected blind to history of TBI. Each

image was assessed by a nuclear medicine specialist

experienced in interpretation of these scans. All 18F-

Florbetaben and FDG scans were rated as ‘‘positive’’ or

‘‘negative,’’ and 18F-Flortaucipir images were rated as

‘‘negative,’’ ‘‘equivocal,’’ or ‘‘positive.’’

Statistical analysis
Power analysis was calculated from amyloid scans in

age matched healthy controls from the AIBL and showed

that to observe a moderate effect size between groups

(Cohen’s d ‡ 0.5), with 80% power, a total of 62 partic-

ipants would be required. Percentages were calculated

for categorical variables. Participant characteristics and

demographics were compared between individuals in

the TBI cohort and the veteran control group using

t-tests and the Wilcoxon signed rank test (when variables

were not normally distributed) for continuous variables

4 CUMMINS ET AL.

D
ow

nl
oa

de
d 

by
 4

7.
20

9.
26

.1
00

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

27
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



and Fisher’s exact test for categorical variables, as well as

Cohen’s d to measure effect sizes. Hierarchical regres-

sions were used to investigate the influence of covariates,

including age, APOE e4 status, years of education, pre-

morbid intellectual functioning, and lifetime PTSD

severity. The Weschler Test of Adult Reading was used

to provide an estimate of IQ, and CAPS Lifetime score

as a measure of lifetime severity of PTSD. Variables

that had a significant effect on the outcome variable

were then controlled for in an analysis of covariance

(ANCOVA). A p value of less than 0.05 was deemed

statistically significant.

Results
Demographics
In the AIBL-VETS cohort, when compared with the con-

trol group, participants with a TBI had significantly fewer

years of education, lower levels of pre-morbid intellec-

tual functioning, higher body mass index (BMI), and

higher PTSD, depression, and distress scores were more

likely to endorse previous diagnosis of sleep apnea and

more likely to carry the APOE-e4 allele (Table 2). Of

the 40 TBI subjects, 12 met criteria for current PTSD.

Of the TBI cohort, 15 participants had suffered mild

TBI (mTBI), 16 moderate, and nine severe. The three

TBI groups did not differ from each other in terms of

demographics or medical comorbidities. Injuries were

sustained from a variety of mechanisms during the time

of their military service and further details are included

in Supplementary Figure S1. The most common cause

of injury, across all severities, was sports related, fol-

lowed by motor vehicle accidents. The average age at

injury was 24.2 (– 5.5), with the average time since injury

44.1 (– 5.3) years. The range for time since injury was

30-53 years.

Positron emission tomography
A t-test on 18F-Florbetaben Centiloid showed no differ-

ence between TBI and NC (Cohen’s d = 0.31, p = 0.2),

despite the larger number of APOE4 carriers in the TBI

group. When considering only the APOE non-E4 carriers,

the Cohen’s d was 0.21 ( p = 0.44). After examining

demographic, medical, and psychiatric covariates, results

from a series of hierarchical linear regressions showed

that only APOE had significant association ( p < 0.02)

with Centiloid value, which did not survive correction

for multiple comparisons. We have previously reported

that PTSD was not associated with PET findings in this

AIBL-VETS cohort.50 After controlling for APOE

using an ANCOVA, the difference was even smaller

between TBI and the NC cohort in 18F-Florbetaben Cen-

tiloid (F = 0.33, p > 0.55). Similar results were found in

the DOD ADNI cohort (Cohen’s d = -0.04, p = 0.81) and

when merging the AIBL-VETS and DOD ADNI cohorts

(Cohen’s d = 0.05, p = 0.72; Fig. 1B, 1C).

T-tests and ANCOVA on global and regional 18F-

Flortaucipir showed no significant difference between

NC and TBI subjects from the AIBL-VETS cohort

(Fig. 2; Neocortical: d = 0.25, p = 0.29; Me: d = -0.02,

p = 0.95; Te: d = 0.25, p = 0.29; R: d = 0.27, p = 0.26),

Table 2. AIBL-VETS Participant Demographics

Mean (SD) or % NC (n = 30) TBI (n = 40) Test statistic (degree of freedom) p value Effect size (Cohen’s d)

Demographics
age, years 69.5 (4.6) 68.0 (2.5) t = 1.78 (66) 0.08
education, years 12.9 (3.0) 11.2 (2.6) t = 2.43 (66) 0.018* 0.61
WTAR US predicted Full Scale IQ 111.8 (5.7) 104.6 (6.9) t = 4.55 (66) < 0.001* 1.12
Combat Exposure Scale 10.0 (8.1) 13.8 (11.0) t = -1.48 (58) 0.145
age at TBI 24.2 (5.5)
APOE e4 carriers
Heterozygotes, % 7.1 40 0.003*
Homozygotes, % 0 0
Medical history
Hypertension 35.70% 50.00% Fisher’s exact test 0.24
Ischemic heart disease 10.70% 20.00% Fisher’s exact test 0.31
Stroke 3.60% 0.00% Fisher’s exact test 0.23
Diabetes 10.70% 22.50% Fisher’s exact test 0.21
Current smoking 3.60% 7.50% Fisher’s exact test 0.5
Migraine 17.90% 27.50% Fisher’s exact test 0.36
Sleep apnea 11.50% 37.80% Fisher’s exact test 0.02* 0.62
BMI 27.0 (3.9) 30.4 (5.1) t = -2.93 (66) 0.005* 0.73
Psychiatric evaluation
Lifetime PTSD score 9.1 (8.6) 51.9 (27.6) t = -8.07 (67) < 0.001* 1.95
Current PTSD score 6.5 (6.1) 29.1 (20.2) t = -5.82 (67) < 0.001* 1.42
Depressive symptoms (GDS) 1.4 (1.7) 4.3 (3.7) W = 277 < 0.001* 0.98
Psychological distress (SLC-90: GSI) 53.8 (13.6) 66.2 (13.9) t = -3.63 (66) 0.001* 0.9
Sleep disturbance (PSQI) 4.8 (4.5) 7.3 (4.2) t = -2.05 (51) 0.045* 0.58

AIBL-VETS, Australian Imaging Biomarkers and Lifestyle study of aging-Veterans study; NC, normal control; TBI, traumatic brain injury; WTAR,
Wechsler Test of Adult Reading; APOE, apolipoprotein E; BMI, body mass index; PTSD, post-traumatic stress disorder; GDS, Geriatric Depression
Scale; SLC-90, Derogatis’ Symptom Checklist-90; GSI, Global Severity Index; PSQI, Pittsburgh Sleep Quality Index.
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from the DOD ADNI cohort (Supplementary Fig. S2;

Neocortical: d = -0.05, p = 0.83; Me: d = -0.1, p = 0.66;

Te: d = -0.06, p = 0.79; R: d = 0.03, p = 0.88) and from

the merging of both cohorts (Neocortical: d = 0.07,

p = 0.68; Me: d = -0.06, p = 0.73; Te: d = 0.06, p = 0.72;

R: d = 0.11, p = 0.52; Fig. 3).

We found no significant difference in the 18F-FDG

SUVs from the cerebellum cortex between NC and TBI

subjects (Cohen’s d = 0.13, p = 0.57), as reported in pre-

vious studies.51 This allowed us to analyze the 18F-

FDG SUVRs. No significant differences were found in

the global and regional quantification of FDG uptake

between NC and TBI groups (Neocortical: d = 0.02,

p = 0.94; ME: d = -0.07, p = 0.76; PCI: d = -0.01,

p = 0.95; Frontal: d = 0.06, p = 0.79; Fig. 4).

Effect of injury severity
To investigate the impact of injury severity, the TBI

cohort was subdivided into mTBI (n = 15) and moderate-

to-severe TBI (n = 25) and we performed the analysis

between NC and the moderate to-severe TBI (Supple-

mentary Fig. S1, lower row). We did not find any signif-

icant covariate and there were no significant differences

between NC and moderate-to-severe TBI in Centiloid

values (AIBL-VETS: Cohen’s d = 0.20, p = 0.48; DOD

ADNI: Cohen’s d = -0.16, p = 0.38, AIBL and ADNI:

Cohen’s d = -0.07, p = 0.61) nor in tau SUVR (Supple-

mentary Fig. S3; Cohen’s d < 0.17, p > 0.5, in Neocorti-

cal, Me, Te, and R).

When visual classifications were analyzed, no differ-

ences in Ab or tau positivity rates were found between

TBI and control cohorts, even after removing the mild

injuries from the analysis.

Discussion
In this study, we employed amyloid, tau and 18F-FDG

PET, and APOE genotyping to investigate the presence

of the neuropathological hallmarks of AD in a homoge-

nous cohort of veterans 3 to 5 decades after TBI. The cur-

rent study did not find evidence of increased amyloid

deposition among veterans with TBI, even in those with

more severe injuries. Our findings were replicated in

the DOD ADNI validation cohort. This result is in line

with previous studies investigating the association

FIG. 1. 18F-Florbetaben Centiloid values for normal control (NC) and traumatic brain injury (TBI) groups
from Australian Imaging Biomarkers and Lifestyle study of aging-Veterans study (AIBL-VETS) and
Department of Defense – Alzheimer’s Disease Neuroimaging Initiative (DOD ADNI) cohorts and both
cohorts together. Top row: NC vs. all TBI; Bottom row: NC vs. moderate or severe TBI.
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between TBI and AD pathology with postmortem

data24,52 and with amyloid PET imaging.26,28 Further,

recent findings in clinically normal older adults confirm

that in a longitudinal Ab-PET study (two Ab-PET

scans, 0.5 to 4,0 years apart), adults with mTBI did

not have a significantly higher rate of Ab accumula-

tion over time than those with no remote head trauma.53

Several other studies have reported association between

TBI and amyloid deposition22,25; however, time between

TBI and in vivo amyloid assessment was less than 1 year,

or the association did not reach significance.23

Using the MeTeR scale, the current study investigated

tau accumulation in AD vulnerable regions; nevertheless,

no significant differences in tracer uptake were found on

two different veteran cohorts (AIBL-VETS and DOD

ADNI), even among those with moderate-to-severe inju-

ries. In contrast to our findings, a study using 11C-PBB3

tau tracer found that patients with mild repetitive or

severe TBI had higher 11C-PBB3 binding in the neo-

cortical gray and white matter than healthy control par-

ticipants.54 Also in one postmortem study, a higher

prevalence of subjects with NFT among TBI was rep-

orted but this was significant only in TBI subjects youn-

ger than 60 years old.23 No difference was observed in a

subsequent, much larger cohort.24

We also report no difference in 18F-FDG uptake in the

posterior brain regions typically affected by AD. Pre-

vious studies reported low glucose metabolism between

FIG. 2. 18F-Flortaucipir standardized uptake value ratios (SUVRs) for normal control (NC) and traumatic
brain injury (TBI) groups from the Australian Imaging Biomarkers and Lifestyle study of aging - Veterans
study (AIBL-VETS) cohort. Me, mesial-temporal; Te, temporal parietal; R, rest of neocortex.

NEUROPATHOLOGICAL MARKERS OF AD IN VETERANS WITH TBI 7

D
ow

nl
oa

de
d 

by
 4

7.
20

9.
26

.1
00

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

27
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



several days and a few months after TBI.55 However, it

was also reported that the depression in glucose metab-

olism subsided after a few months.30

In the 2020 Lancet report on dementia prevention,3

TBI was listed as a factor that can contribute to increased

dementia risk. However, no differentiation between AD

and non-AD dementia was performed. The normal level

of Ab deposition, tau aggregation and glucose metabo-

lism in TBI subjects compared with normal matched

individuals does not support the premise that TBI can

be a risk factor for Alzheimer’s disease. This suggests

that the observed increase in dementia risk may be due

to other causes of dementia as has been suggested,

such as dementia with Lewy bodies24 or frontotemporal

dementia.56,57

Low brain resilience or cognitive reserve leading to

earlier clinical manifestation of dementia for a given

degree of neuropathology could also contribute to the

consistently reported increase in the prevalence of demen-

tia in those with history of TBI. The prevalence of AD

is partially censored by deaths from other causes in the

elderly; therefore, earlier onset in those with TBI would

also suggest higher prevalence. The AIBL-VETS TBI

cohort had many factors that could create low brain

FIG. 3. 18F-Flortaucipir standardized uptake value ratios (SUVRs) for normal control (NC) and traumatic
brain injury (TBI) groups from Australian Imaging Biomarkers and Lifestyle study of aging-Veterans study
(AIBL-VETS) and Department of Defense - Alzheimer’s Disease Neuroimaging Initiative (DOD ADNI) cohorts
merged together. Me, mesial-temporal; Te, temporal parietal; R, rest of neocortex.

8 CUMMINS ET AL.

D
ow

nl
oa

de
d 

by
 4

7.
20

9.
26

.1
00

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

27
/2

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



resilience or reserve. These include diminished white

matter integrity in those with moderate or severe TBI

as previously reported by the authors.45 The TBI cohort

also scored significantly lower on the WTAR measure

of pre-morbid intellectual functioning than controls and

as expected, higher on a number of psychiatric measures.

These included measures of anxiety, somatization, obses-

sive compulsive behaviors, interpersonal sensitivity,

depression, hostility, paranoid ideation, and psychoti-

cism, in addition to lifetime and current PTSD sympto-

mology. Other health measures indicated that the TBI

cohort have a significantly higher BMI than controls,

which may account also for the higher self-reported inci-

dence of sleep apnea in this group. Prevalence of ischemic

heart disease and diabetes, while not significantly differ-

ent to controls, was nearly doubled in the TBI cohort.

The results from the current study provide a unique

perspective into the long-term effects of TBI. Strengths

of the study include: the reasonably large imaged cohort

(114 TBI and 87 veteran controls when AIBL and ADNI

cohorts were merged), homogenous TBI and control

participants by restricting the study to veterans of the

Vietnam war, only including veterans 3 to 5 decades

after injury, and using a range of biomarkers to

FIG. 4. Fluorodeoxyglucose (18F-FDG) standardized uptake value ratios (SUVRs) for normal control (NC)
and traumatic brain injury (TBI) groups in Australian Imaging Biomarkers and Lifestyle study of aging-
Veterans study (AIBL-VETS) for the neocortical, mesial-temporal (Me), posterior cortical index (PCI), temporal
parietal (Te), and frontal composite regions of interest.
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investigate the presence of neuropathological markers of

AD. Our analysis was validated with the independent

DOD ADNI cohort.

Our study has some limitations. Medical records were

not available to confirm TBI severity, therefore, the study

team were reliant upon self-report, which may have led

to an underestimation or overestimation of injury sever-

ity. In addition, sample sizes, while large for a TBI

PET study, restricted group separation by injury mecha-

nism. This resulted in a mixture of single and repetitive

injuries in the mTBI group, and blast, penetrating, and

other injury mechanisms among the moderate-to-severe

TBIs. It was not possible to exclude participants with

TBI in addition to PTSD, and this may limit the applica-

bility of these findings to a number of other TBI cohorts.

In summary, in this study we were not able to identify

an increase in the later life accumulation of the neuro-

pathological markers of AD in veterans with a remote

history of TBI.
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